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SUMMARY
Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the
neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can
acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion
cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON proj-
ect to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually
to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in
BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active.
Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which
may explain the connection between artificial light and metabolic dysregulation, suggesting a potential pre-
vention and treatment strategy for managing glucose metabolic disorders.
INTRODUCTION

For life on earth, light is one of themost prominent environmental

factors. In mammals, photoreception relies mainly on retinal

photoreceptors. Apart from activating conventional rod and

cone photoreceptors, which are responsible for image-forming

vision, light can also directly activate melanopsin-expressing

intrinsically photosensitive retinal ganglion cells (ipRGCs)1

innervating multiple brain areas, such as the olivary pretectal

nuclei, suprachiasmatic nucleus (SCN), preoptic area, and

dorsal perihabenular nucleus for controlling the pupillary light

reflex (PLR),2,3 circadian rhythms,4 sleep,5,6 mood, and cognitive

functions,7–9 respectively.

Driven by the imperative of survival, mammals have developed

precise and complicated regulatory networks for the constant

surveillance and dynamic control of glucose metabolism.10,11

Proper regulation of glucose metabolism demands timely and

dynamic modulation in response to environmental factors.

Epidemiologic studies have found that artificial light is among

the high-risk factors for metabolic diseases such as diabetes

and obesity.12,13 Animal studies have shown that disrupting

the circadian rhythm by varying light patterns can affect meta-

bolism.14,15 For example, weeks-long exposure to abnormal light

at night is known to alter internal hormonal rhythms through circa-
398 Cell 186, 398–412, January 19, 2023 ª 2022 Elsevier Inc.
dian dysregulation16–18 and to thereby influence glucose meta-

bolism.19,20 However, these studies could not unambiguously

separate the contributions of light versus circadian rhythm. A

recent study21 observed that perturbed glucose metabolism in

a chronic jetlagmousemodel was light-intensity dependent, hint-

ing that lightmight be able to directlymodulate glucometabolism.

Here, we present evidence that the hypothalamus supraoptic

nucleus (SON) is critical for the effect of light on glucose meta-

bolism. We further show that activation of the ipRGC-SON

pathway, which continues to excite paraventricular nucleus

(PVN) neurons projecting to GABAergic neurons in the solitary

tract nucleus (NTS), blocks adaptive thermogenesis in brown

adipose tissue (BAT) through b3-adrenergic signaling, leading

to decreased glucose tolerance (GT). Consistent with these

findings, light also decreases glucose metabolism in human

volunteers, a process in which BAT thermogenesis plays a

permissive role.

RESULTS

The ipRGCs are required for the light modulation of GT
To determine the effect of light on glucose metabolism, we kept

animals under the standard photoperiods (12/12: light/dark) and

then performed an intraperitoneal (i.p.) glucose tolerance test
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Figure 1. Light decreases GT by ipRGCs

(A) Schematic of the intraperitoneal glucose tolerance testing (IPGTT, 1-g/kg glucose; see STAR Methods) in light and dark conditions during daytime (ZT5–8.5).

(B–D) Illustration of wild-type (WT) retina with intact rods, cones, and ipRGCs (B), the blood glucose levels (C), and AUC data for GT evaluation. Light exposure

decreased GT, as indicated by significantly elevated AUC values (D), n = 11 mice. Two-tailed paired t test.

(E–G) Illustration of OPN4-knockout (OPN4-KO: Gnat1+/+; Cnga3+/+; Opn4�/�) retina lacking ipRGC (OPN4) photoreception (E). The blood glucose levels (F). GT

was not altered between light/dark conditions (G), n = 9 mice. Two-tailed paired t test.

(H–J) Schematic of melanopsin-only (MO:Gnat1�/�;Cnga3�/�;Opn4+/+) retina lacking rod/cone photoreception (H). The blood glucose levels (I). Light exposure

decreased GT (J), n = 10 mice. Two-tailed paired t test.

(K) Experimental procedure for measuring glucometabolism-relevant hormones between light/dark conditions (left). These hormones were not altered between

light/dark conditions (middle and right). n = 5 mice/group. Two-tailed non-paired t test.

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were presented as mean ± SEM.

See also Figure S1.
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(IPGTT, 1g/kg glucose) during a 3.5 h diurnal window (zeitgeber

time ZT5–8.5, Figure 1A) with or without light (white LED light

unless otherwise stated, Figure S1K; Table 1). This protocol

did not disrupt locomotor activities as shown in actograms (Fig-

ure S1A). After 2 h of fasting, we measured blood glucose levels

at rest (time 0, when mice had been subjected to dark/light for 2

h) and at 15, 30, 60, and 90 min following the intraperitoneal (i.p.)

glucose injection, and we quantified the GT as the area under

curve (AUC). Wild-type (WT) mice tested in dark conditions
exhibited a notably lower AUC (indicating an increased GT),

compared with those tested in light (Figures 1B–1D). This light-

mediated decrease of GT was neither due to insulin intolerance

nor to altered basal blood glucose levels (Figures S1C and S1J).

Next, the IPGTT was performed onmice under natural sunlight

or blue or red LED light (Figure S1L). A higher AUC (decreased

GT) was observed in both natural sunlight and blue light

compared with dark conditions, whereas red light exposure

had no observable effect (Figure S1B).Wemeasured the spectral
Cell 186, 398–412, January 19, 2023 399



Table 1. Characteristics of the LEDs used in experiment

Parameters

Total photon numbers

(photons/mm2.s)

Equivalent intensity to

480 nm (photons/mm2.s)

sunlight 9.39 3 106 1.93 3 106

blue 2.14 3 106 1.86 3 106

red 2.01 3 106 5.68 3 103

white 1.67 3 106 4.68 3 105

Note: Light intensity equal to 480 nm (peak sensitivity of melanopsin).

Equivalent intensities were calculated by using normalized spectral

sensitivity of OPN4.

ll
Article
power distributions of these light sources and converted them

into equivalent 480-nm monochromic light intensities (Table 1),

based on the mice melanopsin action spectrum with peak at

480 nm.22 These equivalent 480-nm light intensities reflect these

light sources’ capabilities to effectively activate ipRGCs.23

Indeed, although the original photon intensity (total photon

numbers) of red light was comparable to that of blue light or sun-

light, the equivalent number of photons at 480 nm for red light

was two to three orders of magnitudes lower than that for blue

or sunlight (Table 1). The intensities of sunlight, white LED light,

and blue LED light were all sufficient to activate ipRGCs,23 indi-

cated by prominent pupil contraction in Opn4+/+; Pde6brd1/rd1;

ConeDTA mice (which only have ipRGC photoreception)

(Figures S1K and S1L). These results suggest that light regulates

GT when it can effectively activate ipRGCs.

Next, to determine which type of photoreceptor mediates the

effect of light onGT, we performed IPGTTs inmice lacking ipRGC

photoreception due to loss of function (LoF) of Opn4, which

encodes melanopsin (OPN4-KO: Opn4�/�, Figure 1E), and

mice lacking rod and cone photoreception (melanopsin-only

[MO]: Gnat1�/�, Cnga3�/�, Opn4+/+, Figure 1H) in light or dark

conditions. WT andMOmice exhibited a higher AUC (decreased

GT) in light when compared with AUC in darkness (Figures 1I and

1J). Conversely, the AUC of OPN4-KO mice (Figures 1F and 1G)

was not affected by light, indicating that ipRGCs are the major

photoreceptors responsible for the effect of light on GT. We

also performed IPGTTs during nighttime (ZT13–16.5). AUC in

darkness was found to be lower (increased GT) than AUC

measured when there was light (Figures S1D–S1G), comparable

to our findings during daytime, confirming that the effect of light

on GT was independent of the circadian phase (day or night).

We further screened for light-induced changes of hormones

and nutrients involved in glucose metabolism (insulin, glucagon

like peptide-1, corticosterone, glucagon, epinephrine, lactate,

non-esterified fatty acids, norepinephrine, ghrelin, orexin A,

growth hormone, cholecystokinin, leucine, 4-OH-isoleucine,

valine, and cholesterol) and found that all those examined were

unaltered (Figures 1K, S1H, and S1I). These data indicate that

there might be a direct neural circuit mediating light modulation

of GT.

An ipRGC-hypothalamic SON projection mediates the
light modulation of GT
IpRGCs are known to directly project to the hypothalamic re-

gion,24 a crucial hub in regulation of metabolism.25 Among all
400 Cell 186, 398–412, January 19, 2023
the hypothalamic nuclei receiving ipRGCs inputs, the SCN

(central circadian pacemaker) and the SON are the most heavily

innervated.24 This was confirmed inOpn4-Cremice (for selective

labeling of ipRGCs) by performing anterograde viral tracing, using

monocular injections of AAV2/2-DIO-ChR2-EYFP (Figures 2A

and 2B), and retrograde tracing from the SCN or SON, using

AAV2/2Retro-DIO-ChETA-EYFP (Figures 2C–2F). In addition,

substantial c-Fos expression in the SCN and SON, following light

stimulation, was detected (Figures S2A and S2B), which further

verified that ipRGCs provide extensive inputs to the SCN

and SON.

We separately probed the SCN and SON with an excitotoxic

lesion to evaluate their contributions to the light-mediated

decrease of GT. The SCN lesion abolished the circadian rhythm

yet had no effect on the light-induced difference in AUC. Surpris-

ingly, SON lesion completely prevented light modulation of GT

while leaving the circadian rhythm intact (Figures 2G, 2H, S2C,

and S2H). We further employed Opn4f/f mice, a genetically

engineered strain that allows Cre-dependent knock out of mela-

nopsin.26 Using these mice, we achieved specific ablation of

photoreception in SON-innervating ipRGCs (OPN4-KOSON) and

SCN-innervating ipRGCs (OPN4-KOSCN) by injecting AAV2/

2Retro-Cre into the SON and SCN areas, respectively. The

AUCs for OPN4-KOSCN mice and control mice (Opn4f/f) were

higher in light than in darkness. In the OPN4-KOSON mice, on

the other hand, the difference in AUCs between light and dark

conditions was abolished (Figures 2I, S2D, S2E, and S2H), sug-

gesting that light no longer affects GT in these animals. These re-

sults indicate that the SON, but not SCN, plays a key role in the

effect of light on GT.

To evaluate the percentage of ipRGCs in SON-innervating

RGCs, we delivered AAV2/2Retro-GFP into SON in WT mice.

There were 121.3 ± 7.5 SON-innervating RGCs per retina (GFP

positive) (Figure S2F). The retrograde tracing experiment

showed that overall numbers of SON-innervating ipRGCs in

Opn4-Cre mice was 101.3 ± 5.0 (Figure 2F). Thus, the percent-

age of SON-innervating ipRGCs was about �83%, supporting

the notion that ipRGCs carry major retinal inputs to the SON.

We next chemogenetically manipulated the SON-projecting

ipRGCs to assess their roles in light modulation of GT. AAV2/

2Retro-Cre was delivered into the SON, by injecting either an

excitatory or inhibitory chemogenetic virus (excitatory: AAV2/2-

DIO-hM3Dq-mCherry, inhibitory: AAV2/2-DIO-hM4Di-mCherry,

control: AAV2/2-DIO-mCherry) into the vitreous chamber of the

eyes. Approximately 70% of retrogradely labeled (mCherry-

positive) RGCs were melanopsin immunopositive (Figures 2J

and 2K). Considering the efficiency of melanopsin antibody,

this percentage is reasonable. There are �117 SON-innervating

hM3Dq-mCherry and �120 SON-innervating hM4Di-mCherry-

positive RGCs per retina (Figure S2G), suggesting that most

SON-innervating RGCs (121.3 ± 7.5) were infected by chemoge-

netic virus. Also, 30 min prior to the IPGTT, mice received

2 mg/kg i.p. clozapine-N-oxide (CNO) for tonic activation

(hM3Dq) or inhibition (hM4Di) of ipRGCs. We found that both

exciting and repressing SON-projecting ipRGCs abolished the

light/dark difference in AUC, yet in an opposing fashion. Activa-

tion of SON-projecting ipRGCs increased the AUC in darkness to

the level observed in light (Figures 2L and S2I); inhibition of
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SON-projecting ipRGCs, however, reduced the AUC in light to

that in darkness (Figures 2Mand S2I). These results were consis-

tent with our proposed model in which ipRGC projections to the

SON mediate the effect of light on GT. In control animals ex-

pressing mCherry, the effects of light on GT were similar regard-

less of whether they received PBS or CNO treatment, which

ruled out non-specific actions of CNO (Figures 2N and S2I).

The SONAVP-PVN projection is necessary for light
modulation of GT
The SON mainly harbors two neuronal subtypes, vasopressin

(AVP) and oxytocin (OXT) neurons. Trans-synaptic retrograde

tracing was conducted by introducing a modified rabies virus

(RV-EnvA-DG-mRuby3) and helper viruses (AAV2/5-DIO-RVG

and AAV2/5-DIO-H2B-EGFP-T2A-TVA) into Oxt-Cre and Avp-

Cre mice, which enabled labeling of input neurons that synapse

onto SONOXT (SONOXT) and AVP (SONAVP) neurons, respectively

(Figures 3A and S3A). We found that both SONOXT and SONAVP

neurons received inputs from ipRGCs with approximately 5-fold

more ipRGCs retrogradely labeled from SONOXT than from

SONAVP (Figures 3B and 3C). The SONOXT and SONAVP neurons

were both excited by light (Figures S3B and S3C).We then sought

to dissect the contributions of SONOXT and SONAVP neurons to

light modulation of GT by performing LoF manipulations (Fig-

ure S3D). Chemogenetic inhibition of SONOXT neurons reduced

the AUC (increased GT) in light to the level observed in darkness

(Figures 3D and S3G). Similar results were also obtained from

chemogenetic inhibition of SONAVP neurons (Figures 3E and

S3H). These data suggest that both SONOXT and SONAVP neurons

are required for light modulation of GT. We hence speculated that

there exists a microcircuit within the SON. In fact, we did find

substantial reciprocal projections between SONAVP and SONOXT

neurons (Figures 3F and 3G). Furthermore, previous reports

suggested thatOXT or AVPneurons could regulate glucosemeta-

bolism27,28 by releasing these peptides into blood circulation.

However, no light/dark differences in the plasma vasopressin

and oxytocin levels were observed (Figure S3E).

SON is known to project to the PVN,29 an important brain area

for controlling the metabolism.30–32 Our retrograde virus tracing

further revealed that PVN-projecting neurons in the SON were

primarily AVP positive (Figures 3H–3J). We suppressed PVN-
Figure 2. IpRGCs’ input to hypothalamic SON mediates light decrease

(A and B) Schematic of anterograde tracing and image of ipRGCs in Opn4-Cre m

(C–F) Schematic of the retrograde tracing system used to quantify SON-innervatin

(E) and quantification (F) of SON-innervating ipRGCs (mean ± SD, 101.3 ± 5.0, n

(G) GFAP labeling outlined the NMDA-induced lesion in SCN. Light exposure decr

tailed paired t test.

(H) GFAP labeling outlined the NMDA-induced lesion in SON. Light exposure dec

Both by two-tailed paired t test.

(I) Cre-dependent knock out ofmelanopsin in SON-projecting ipRGCs (OPN4-KOS

OPN4-KOSCN mice (n = 12) but not in OPN4-KOSON mice (n = 11). Both by two

(J and K) Schematic of ipRGC-SON tracing and of inhibitory or excitatory man

Arrowhead denotes melanopsin immunofluorescence (green) overlapped with SO

mCherry+ cells were observed in SON-projecting RGCs (mCherry+). n = 3 mice.

(L–N) GT evaluation with CNO-induced activation ([L] n = 12 mice, hM3Dq) and in

([N] n = 8 mice, mCherry). All by two-way ANOVA, Tukey’s post hoc test.

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were represented as mean ± SEM.

See also Figure S2.
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innervating SON neurons, using the tetanus toxin (TetTox), and

found that the difference in AUC between light and dark condi-

tions was abolished (Figure S3F). We then delivered AAV2/

2Retro-FLEX-Flp into the PVN while delivering AAV2/9-fDIO-

hM4Di-mCherry into the SON of Avp-Cremice to achieve selec-

tive inhibition of PVN-projecting SONAVP neurons. We found that

this manipulation prevented the light-mediated decrease in GT

and reduced the AUC level in light (Figures 3K and S3I), indi-

cating that SONAVP neurons were the major output neurons

from the SON to the PVN in this pathway.

PVN projection to the medulla is required for light
modulation of GT
To determine the downstream targets in the pathway for light

modulation of GT, we performed anterograde trans-synaptic

tracing by injecting scAAV2/1-Cre into the SON and AAV2/9-

FLEX-GFP into the PVN, enabling selective GFP expression in

SON-innervated PVN neurons. We found dense labeling of

GFP-positive axonal terminals in the NTS of the medulla

(Figures 4A and 4B), along with sparse signals in the periaque-

ductal gray and dorsal raphe regions (Figure S4A). Retrogradely

modified rabies virus (RV) tracing from NTS-projecting PVN

neurons confirmed the synaptic relay of SON-PVN-NTS

(Figures 4C and S4B). Furthermore, labeled neurons in the

SON were exclusively AVP positive (Figures 4D and 4E), sug-

gesting that SONAVP, but not SONOXT,neurons serve as the

output neurons innervating the NTS via PVN. We then inhibited

the NTS-projecting PVN neurons, through either CNO-induced

inactivation or TetTox-mediated synaptic suppression, and

found that the AUCs for the CNO and TetTox treatments were

lower in light (increased GT) and thus exhibited no light/dark

difference (Figures 4F–4H, S4C, and S4H). In addition, we found

that NTS-projecting PVN neurons were OXT and brain-derived

neurotrophic factor (BDNF) positive (Figures S4D and S4E)

and that GABAergic neurons in the NTS received PVN projec-

tions (Figure S4F).

The GABAergic NTS neurons are known to innervate the

rostral raphe pallidus (RPa), which is involved in regulating the

glucose sink properties of BAT.33,34 Moreover, our tracing

experiment also revealed that NTS neurons relaying PVN inputs

to the RPawere predominantly GABAergic (Figure 4I). Therefore,
of GT

ice (A) and their terminals in SON and SCN areas (B).

g ipRGCs and SCN-innervating ipRGCs in Opn4-Cremice (C). Images (D) and

= 3 mice) or SCN-innervating ipRGCs (103 ± 12.1, n = 4 mice).

eased GT in SCN-Sham (n = 12) and SCN-lesioned mice (n = 11). Both by two-

reased GT in SON-Sham (n = 12) mice but not in SON-lesioned mice (n = 10).

ON) or SCN-projecting ipRGCs (OPN4-KOSCN). Light exposure decreasedGT in

-tailed paired t test.

ipulations of SON-projecting ipRGCs (J). Image of SON-projecting ipRGCs.

N-projecting RGCs (red) in retina (K). Percentage (70.0% ± 2.9%) of ipRGCs+-

hibition ([M] n = 11 mice, hM4Di) of ipRGCs-SON pathway, and in control mice

Scale bars, 100 mm in (A), 50 mm in (B), (D), (E), (G), and (H), and 25 mm in (K).
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to determine whether Rpa-projecting GABAergic neurons in the

NTSmediate the decrease of GT in response to light, we injected

AAV2/2Retro-FLEX-Flp into the RPa and AAV2/9-fDIO-hM4Di-

mCherry into the NTS to chemogenetically inhibit RPa-

projecting NTS Vgat (NTSVgat) neurons in Vgat-Cre mice. This

manipulation again reversed the effect of light and reduced the

AUC in light to the level observed in darkness (Figures 4J,

S4G, and S4H). Together, these observations show that light

regulates GT via the ipRGC-SONOXT-SONAVP-PVN-NTSVgat-

RPa pathway (Figure 4K).

Light decreases GT by blocking adaptive thermogenesis
in BAT
The sympathetic premotor neurons residing within the RPa

directly modulate BAT thermogenesis,33 which is closely associ-

ated with blood glucose clearance.35 We delivered retrograde

RFP-expressing pseudorabies virus (PRV) into intrascapular

BAT (iBAT) and identified several brain regions, including the

SON, PVN, NTS, and Rpa, as upstream hotspots (Figures 5A,

5B, and S5A), establishing an anatomical link between iBAT

and the SON-PVN-NTS-RPa pathway.

Next, we examined whether light modulates BAT thermogen-

esis. In dark conditions, a single glucose injection induced an

adaptive change in BAT thermogenesis, with an increase in

iBAT surface temperature. Interestingly, light blocked this

adaptive thermogenesis (Figures 5C and 5D). Expression of

key thermogenic genes in iBAT, including Ucp1, Pgc1a, Dio2,

was upregulated in dark conditions following glucose loading

but was not altered in light conditions (Figure S5C). Given that

there is white/beige adipose tissue under the skin surrounding

iBAT, we investigated whether light regulation of intrascapular

surface temperature was caused by white/beige adipose tissue

or iBAT. We made bilateral cuts in five intercostal sympathetic

nerve branches subserving iBAT (Figure S5B), as previously

described,36,37 and found that glucose-induced elevation in

intrascapular surface temperature was abolished (Figure 5E).

Therefore, the increased intrascapular surface temperature is

being driven mainly by iBAT, but not by white/beige adipose

tissue. These suggest that light does modulate glucose-induced

BAT thermogenesis through sympathetic pathway.
Figure 3. SONAVP-PVN projection mediates light decrease of GT

(A–C) Experiment of monosynaptic tracing (A). Image of rabies virus (RV)- mRuby3

(top) and Avp-Cre (bottom) retina (B). Quantification of RV+-ipRGCs (C) in the reti

cells from 2 mice). We observed approximately 5-fold more ipRGCs retrogradely

(D and E) GT evaluation following CNO-induced inhibition of OXT neurons ([D] n = 9

hoc test.

(F and G) Experiment of monosynaptic tracing, same as in (A), for evaluating the

mice (top), AVP neurons (cyan immunofluorescence) providing monosynaptic inp

Cre mice (bottom), OXT neurons (cyan immunofluorescence) providing monosyn

(F). In (G), the percentage of RV+-AVP+ neurons in total AVP+ neurons (23.1% ± 3.2

n = 3 mice) are shown for Oxt-Cre mice and Avp-Cre mice, respectively.

(H–J) Retrograde tracing experiment was used to identify the PVN-projecting SO

top) or OXT neurons (red, bottom) overlapped with PVN-projecting SON neuro

(16.5% ± 5.6%) cells in PVN-projecting SON EYFP+ neurons (J), n = 3 mice/grou

(K) Schematic and image of specifically inhibiting PVN-projecting SONAVP neuro

pathway. Two-way ANOVA, Tukey’s post hoc test.

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were represented as mean ± SEM.

See also Figure S3.

404 Cell 186, 398–412, January 19, 2023
We further examined whether this light regulation of BAT ther-

mogenesis caused light modulation of GT. Since it was reported

that BAT-mediated adaptive thermogenesis can be restricted by

thermoneutrality (�30�C),38,39 we indeed found that the glucose-

induced BAT thermogenesis was abolished at 30�C. We

measured GT at 30�C and found that the increased GT observed

in darkness was also abolished (Figures 5F and S5J). In addition,

treatment with SR59230A (a selective b3-adrenoceptor antago-

nist, 1 mg/kg i.p.) blocked the BAT-mediated adaptive thermo-

genesis in darkness (Figure 5G), resembling the light-induced

suppression. Importantly, SR59230A also decreased GT in dark-

ness, increasing the dark AUC to that observed in light,

mimicking the effect of light on GT (Figures 5H and S5J). Simi-

larly, in b3-adrenergic receptor (b3AR) knockout mice (Adrb3�/

�), AUC did not differ between light and dark conditions

(Figures 5I and S5J). The difference in adaptive thermogenesis

previously seen when comparing light and dark conditions was

again abolished in Adrb3�/� mice (Figures 5J and 5K). These re-

sults indicate that light blocks BAT-mediated adaptive thermo-

genesis via b3-adrenergic signaling to decrease GT.

In OPN4-KO mice, iBAT surface temperature was increased in

both light and dark conditions (Figure S5D), suggesting that light

regulation of adaptive thermogenesis in BAT is ipRGC depen-

dent. Next, we monitored the iBAT surface temperature in

OPN4-KOSON mice, in which melanopsin was selectively

knocked out in SON-projecting ipRGCs. As expected, in these

mice, light no longer blocked BAT-mediated adaptive thermo-

genesis (Figures 5L–5N), neither did light prevent the upregula-

tion of Ucp1/Pgc1a/Dio2 in BAT following glucose loading

(Figure S5E). Light also did not block BAT-mediated adaptive

thermogenesis when there was selective inhibition of neural

pathways, namely, SONAVP-PVN, PVN-NTS, and NTSVgat -RPa

(Figures S5F–S5I). These findings collectively indicate that light

blocks adaptive thermogenesis in BAT through the retinal

ipRGC-SON-PVN-NTS-RPapathway and thereby decreasesGT.

Light modulation of human GT depends on BAT activity
To examine whether light similarly decreases GT in humans, 12

healthy volunteers (subject characteristics, Table S1; STAR

Methods) were recruited for a 75-g oral glucose tolerance test
(red) overlapped with melanopsin immunofluorescence (green) in theOxt-Cre

na of Oxt-Cre mice (72 cells from 2 mice) and in the retina of Avp-Cre mice (15

labeled from SONOXT than from SONAVP.

mice) or AVP neurons ([E] n = 13mice). Both by two-way ANOVA, Tukey’s post

reciprocal projections between AVP and OXT neurons within SON. In Oxt-Cre

ut to starter neurons (OXT neurons) are labeled with RV-mRuby3 (red). In Avp-

aptic input to starter neurons (AVP neurons) are labeled with RV-mRuby3 (red)

%, n = 3mice) and of RV+-OXT+ neurons in total OXT+ neurons (43.8% ± 4.6%,

N neuron types (H). Image of immunohistochemistry against AVP neuros (red,

ns (green) (I). Percentage of AVP+&EYFP+ (75.2% ± 2.5%) or OXT+&EYFP+

p.

ns. GT evaluation with CNO-induced inhibition of SONAVP-PVN (n = 9 mice)

Scale bars, 25 mm in (B), (F), (I), and (K).
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Figure 4. PVN-NTSVgat-RPa projection mediates light decrease of GT

(A and B) Schematic of the anterograde trans-synaptic tracing (A). Image of SON-innervated PVN neurons and their axonal terminals (B).

(C–E) Schematic of RV-mediated monosynaptic tracing in NTS-projecting PVN neurons (C). Close-up showing co-localization of RV-mRuby3 (red) with

immunofluorescence staining of AVP neurons (top, cyan) but not with OXT neurons of SON (bottom, cyan) (D). Percentage of RV+&AVP+ (72.5% ± 2.9%, n = 3

mice) or RV+&OXT+ (0, n = 4 mice) cells in RV+ neurons in SON (E).

(F–H) GT evaluation with CNO-induced ([F] n = 12 mice) and TetTox-mediated ([H] n = 9 mice) inhibition of PVN-NTS pathway (n = 12 mice). GT evaluation in

mCherry-mediated control group ([G] control, n = 11 mice). Two-way ANOVA, Tukey’s post hoc test for (F). Two-tailed paired t test for both (G) and (H).

(I) The tracing experiment was used to identify the type of neurons of NTSwithin PVN-NTS-RPa pathway. Close-up showing co-localization (yellow) of GABAergic

NTS neurons within PVN-NTS-RPa pathway. Percentage of GABAergic neurons in NTS neurons relaying PVN inputs to RPa (88.4% ± 1.4%, n = 3 mice).

(legend continued on next page)
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(OGTT) during daytime (Figure 6A) at an ambient temperature

of �19�C, during which BAT thermogenesis is active.38

Each subject underwent two sessions, one with the lights on

(�400 lux, Figure S6B) and the other in darkness, spaced

3 days apart. These volunteers exhibited a higher AUC

(decreased GT) in light (white LED light, Figures 6A and S6A).

We also performed OGTT during nighttime (14 healthy volun-

teers, Table S1). Here, there was also a higher AUC (decreased

GT) under light conditions (Figures 6B and S6A), confirming that

the effect of light on human GT was independent of circadian

phase, which was consistent with what was observed in our

mice experiments.

In addition, we evaluated human GT (14 healthy volunteers,

Table S1) under blue and red LED light conditions (Figure S6B)

and found that blue rather than red light exposure decreased

GT (Figures 6C and S6A).

To further evaluate the relevance of BAT thermogenesis in

human glucose regulation (10 healthy volunteers, Table S1),

the GT assessment was repeated at �29�C, which is within the

human thermoneutral zone (26�C–33�C) where BAT-mediated

adaptive thermogenesis is restricted.38,39 The AUC was no

longer affected by the presence or absence of light (white LED

light) (Figures 6D and S6A). These data suggest that light indeed

decreased human GT and that this likely involved inhibition of

BAT-mediated adaptive thermogenesis.

DISCUSSION

Glucose homeostasis is achieved through highly orchestrated

processes that detect and respond to fluctuations in internal

and external environments. We present evidence that the

retina-SON-BAT axis mediates the effect of light on GT. Light

decreases GT by activating ipRGCs, leading to inhibition of

BAT-mediated adaptive thermogenesis through b3-adrenergic

signaling (Figure 6E).

Disruptions of the core circadian clock in the SCN can affect

metabolism.19,40 IpRGC innervation of the SCN influences circa-

dian rhythms.41,42 Therefore, it is speculated that light may regu-

late glucometabolism via the SCN. However, in the present

study, the SCN excitotoxic lesion, which abolished the circadian

rhythm, had no effect on light regulation of GT; whereas the SON

lesion prevented light from affecting GT. A previous study

reported that SCN lesion alters insulin sensitivity mainly by regu-

lating endogenous glucose production, but not glucose clear-

ance,43 which is consistent with our observation. More impor-

tantly, selective ablation of SON-innervating ipRGCs, but not

SCN-innervating ipRGCs, also abolished the effect of light on

GT. Taken together, these observations indicate that light

acutely modulates GT in a circadian-independent manner

involving the SON but not the SCN.

OXT and AVP neurons constitute the majority of SON/PVN

neurons in the hypothalamus, besides being components of
(J) Schematic of selective inhibition of RPa-projecting GABAergic neurons in NTS

pathway (n = 8 mice). Two-way ANOVA, Tukey’s post hoc test.

(K) Model of the light-induced decrease in GT via ipRGCs-SONOXT-SONAVP-PVN

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were represented as mean ± SEM.

See also Figure S4.
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neural circuits involved in light modulation of glucose meta-

bolism. It is well established that these neurons extend their

axons to the pituitary and exert regulatory roles in a neuroendo-

crine manner by producing and secreting neuropeptides

into circulation44; these neuropeptides can regulate glucose

metabolism in a dose-dependent fashion.45–47 However, in

our study, no difference was detected in the plasma levels

of either neuropeptide OXT or AVP between darkness

and light conditions. In addition, inhibition of a downstream

nucleus, such as NTS, fully prevented light from affecting

GT. Therefore, our results suggest that the effect of light on

GT requires a direct neural circuit involving SON, instead of

neuroendocrine.

It is worth noting that there are several extraocular opsins.48,49

Whether light reception by these opsins participates in the light-

mediatedmodulation of glucose observed in our study should be

considered. However, our experiments with OPN4-KO mice

(Opn4�/�) and OPN4f/f mice (OPN4-KOSON) established the

requisite role of melanopsin-expressing ipRGCs. Our inhibitory

manipulations of the neural circuit further ruled out the possibility

that extraocular opsins contribute to the effect of light on glucose

metabolism.

BAT is a specialized thermogenic organ with roles in energy

metabolism and temperature regulation. Diet-induced thermo-

genesis (DIT) relies on UCP1 in BAT.50–53 In this study, light

regulation of BAT thermogenesis is also associated with

expression of Ucp1/Pgc1a/Dio2 in BAT after i.p. injection of

glucose. It is possible that light might work with DIT to affect

BAT energy metabolism, which need further investigation.

BAT activity is also regulated by central and peripheral circa-

dian clocks.54–59 Daily temperature fluctuations have been

shown to provide powerful entrainment for peripheral oscilla-

tors, including BAT.60–62 The present study focuses on the

acute effect of light/dark exposure (3.5 h) on BAT activity by

sympathetic signaling, but it does not evaluate more long-

term effects of dark/light exposure on BAT thermogenesis.

However, when exposed to aberrant light/dark conditions for

a prolonged period, the circuit described here might contribute

to the interactions of peripheral circadian clocks and light on

BAT activities.

There are daily changes in glucose metabolism at different

times of the day/night cycle.63,64 Higher GT was observed at

the active phase (night) compared with the inactive phase (day)

in mice (a nocturnal species).65,66 A similar phenomenon occurs

in humans (a diurnal species).67–71 Our results also showed the

effect of the circadian phase on GT in both mice and humans

with higher GT at the active phase compared with the inactive

phase (for mice, see Figures 1D and S1E; for humans, see

Figures 6A and 6B). Importantly, our results from both humans

and mice show that light regulation of GT is independent of the

circadian phases (Figure 6E). Particularly for humans, GT during

nighttime (inactive phase) is worse than that during daytime
of Vgat-Cre mice (NTSVgat). GT evaluation following inhibition of NTSVgat-RPa

-NTSVgat-RPa pathway.

Scale bars, 50 mm in (B) and 25 mm in (D) and (I).
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Figure 5. Light decreases GT through blocking BAT-mediated adaptive thermogenesis

(A and B) Experiment of PRV-mediated retrograde polysynaptic tracing (A). Images showing RFP+ neurons in RPa, NTS, PVN, and SON (B) that were poly-

synaptically linked to iBAT.

(legend continued on next page)
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(active phase), and on top of this, nighttime light further impairs

GT, resulting in an even worsened condition. Therefore, the

metabolic impact of nighttime light should be considered,

especially when nighttime dining is common among the general

population. Providing ambient light at appropriate spectral

qualities or intensities may be beneficial for public health.

Endotherms rely on BAT thermogenesis to maintain core body

temperature in ever-changing environments.72 For wild animals,

emerging from dens may result in fast and dramatic changes in

the level of heat radiation from sunlight. The pathway we

describemight provide ameans for the fast regulation of thermo-

genesis in response to altered sun radiation. Interestingly, short-

wavelength (blue) light is most effective at activating ipRGCs and

thereby repressing BAT thermogenesis according to our model.

This acute inhibition of thermogenesis might thus generate a

‘cold’ feeling. Such engram may be relevant to the hue-heat

effect in psychophysics.73 In the post-industrial era, exposure

to excessive artificial lighting seriously perturbs metabolic ho-

meostasis.13,20 Our findings in mice and humans provide one

possible explanation for the epidemiologic observations and

may reveal a potential prevention and treatment strategy for

metabolic disorders, for instance, by optimizing indoor lighting

conditions (intensity and spectrum).
Limitations of the study
This study demonstrates an important role of light itself in

regulating glucose metabolism by blocking the BAT-mediated

adaptive thermogenesis via the retina-brain-adipose tissue

axis. It would be interesting to further investigate the mecha-

nisms underlying light-mediated regulation of other metabolic

pathways important for human health, including fat metabolism

and amino acid metabolism. Additionally, it is also important to

understand the molecular mechanism of how BAT responds to

light/dark alteration. Further clinical and animal studies are war-

ranted to determine the long-term effects of light/dark condi-

tions on weight control and the prevention of metabolic

disorders.
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Figure 6. Light decrease of human GT dependent on BAT activity

(A) Schematic of 75-g oral glucose tolerance test (OGTT) for humans during daytime. Volunteers were subjected to OGTT twice with a 3-day interval between the

light (400 lux)/dark conditions. GT evaluation during daytime at �19�C ambient temperature where BAT-mediated adaptive thermogenesis was actived (n = 12).

Two-tailed paired t test.

(B) Humans GT evaluation during nighttime. n = 14. By two-tailed paired t test.

(C) Humans GT evaluation under the blue/red light. n = 14. By one-way ANOVA, Tukey’s multiple comparisons test.

(D) GT evaluation at�29�C ambient temperature, within the thermoneutral zone where BAT-mediated adaptive thermogenesis was restricted (n = 10). Two-tailed

paired t test.

(E) Work model: light regulation of GT was independent of active/inactive phase in both humans and mice. Light activates intrinsically photosensitive retinal

ganglion cells’ (ipRGCs) inputs to the oxytocin (OXT) neurons and to vasopressin (AVP) neurons in the supraoptic nucleus (SON), next to the paraventricular

nucleus (PVN); to GABAergic neurons in solitary tract nucleus (NTS); to rostral raphe pallidus (RPa); and to the brown adipose tissue (BAT). This circuitry mediates

decrease of the BAT thermogenesis through b3-adrenergic signaling and decreases glucose tolerance (GT).

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were represented as mean ± SEM.

See also Figure S6 and Table S1.
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drid, J.A., Gómez-Abellán, P., and Garaulet, M. (2015). Meal timing affects

glucose tolerance, substrate oxidation and circadian-related variables: A

randomized, crossover trial. Int. J. Obes. (Lond.) 39, 828–833. https://

doi.org/10.1038/ijo.2014.182.

71. Sonnier, T., Rood, J., Gimble, J.M., and Peterson, C.M. (2014). Glycemic

control is impaired in the evening in prediabetes through multiple diurnal

rhythms. J. Diabetes Complications 28, 836–843. https://doi.org/10.

1016/j.jdiacomp.2014.04.001.

72. Cannon, B., and Nedergaard, J. (2004). Brown adipose tissue: function

and physiological significance. Physiol. Rev. 84, 277–359. https://doi.

org/10.1152/physrev.00015.2003.

73. Mogensen, M.F., and English, H.B. (1926). The apparent warmth of colors.

Am. J. Psychol. 37, 427–428. https://doi.org/10.2307/1413633.

74. Chen, X., and Li, H. (2017). ArControl: an Arduino-based comprehensive

behavioral platform with real-time performance. Front. Behav. Neurosci.

11, 244.

https://doi.org/10.1073/pnas.1909883116
https://doi.org/10.1016/j.tem.2015.09.008
https://doi.org/10.1016/j.molmet.2014.03.002
https://doi.org/10.1016/j.molmet.2014.03.002
https://doi.org/10.1016/j.tem.2016.03.005
https://doi.org/10.2337/diabetes.50.6.1237
https://doi.org/10.2337/diabetes.50.6.1237
https://doi.org/10.1038/s41586-021-03358-w
https://doi.org/10.1038/s41586-021-03358-w
https://doi.org/10.2337/diab.22.5.333
https://doi.org/10.2337/diab.22.5.333
https://doi.org/10.3390/nu10111763
https://doi.org/10.1073/pnas.1418955112
https://doi.org/10.1038/ijo.2014.182
https://doi.org/10.1038/ijo.2014.182
https://doi.org/10.1016/j.jdiacomp.2014.04.001
https://doi.org/10.1016/j.jdiacomp.2014.04.001
https://doi.org/10.1152/physrev.00015.2003
https://doi.org/10.1152/physrev.00015.2003
https://doi.org/10.2307/1413633
http://refhub.elsevier.com/S0092-8674(22)01537-9/sref74
http://refhub.elsevier.com/S0092-8674(22)01537-9/sref74
http://refhub.elsevier.com/S0092-8674(22)01537-9/sref74


ll
Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-oxytocin Abcam Cat#ab212193; RRID: AB_2895534

Rabbit anti-vasopressin Immunostar Cat#20069; RRID: AB_572219

Rabbit anti-melanopsin Advanced Targeting System Cat#AB-N38; RRID: AB_1266797

Rabbit anti-GFAP Sangon Biotech Cat#D120691

Rabbit anti-cFos Synaptic Systems Cat#226003; RRID: AB_2231974

Mouse anti-BDNF Proteintech Cat#66292-1-lg; RRID: AB_2881675

Alexa FluorTM 488 donkey anti-mouse IgG Thermo Fisher Cat#A10680; RRID: AB_2534062

Alexa FluorTM 488 goat anti-rabbit IgG Thermo Fisher Cat#A11034;RRID: AB_2576217

Alexa FluorTM 568 goat anti-rabbit IgG Thermo Fisher Cat#A11036; RRID: AB_10563566

Bacterial and virus strains

AAV2/2-hEF1a-DIO-ChR2-eYFP Shanghai Taitool Bioscience Co.Ltd. Cat#S0199-2

scAAV2/1-hSyn-Cre-pA Shanghai Taitool Bioscience Co.Ltd. Cat#S0292-1

AAV2/2Retro-hSyn-Cre Shanghai Taitool Bioscience Co.Ltd. Cat#S0278-2R

AAV2/2Retro-hSyn-Flp Shanghai Taitool Bioscience Co.Ltd. Cat#S0271-2R

AAV2/2Retro-CAG-FLEX-Flpo Shanghai Taitool Bioscience Co.Ltd. Cat#S0273-2R

AAV2/9-hEF1a-DIO-EYFP Shanghai Taitool Bioscience Co.Ltd. Cat#S0196-9

AAV2/9-hEF1a-fDIO-mGFP Shanghai Taitool Bioscience Co.Ltd. Cat#S0289-9

AAV2/9-hSyn-DIO-hM4Di-mCherry Shanghai Taitool Bioscience Co.Ltd. Cat#S0193-9

AAV2/9-hSyn-DIO-mCherry Shanghai Taitool Bioscience Co.Ltd. Cat#S0240-9

AAV2/9-hEF1a-fDIO-hM4D(Gi)-mCherry Shanghai Taitool Bioscience Co.Ltd. Cat#S0336-9

AAV2/2-hSyn-DIO-hM3Dq-mCherry Shanghai Taitool Bioscience Co.Ltd. Cat#S0192-2

AAV2/2-hSyn-DIO-hM4Di-mCherry Shanghai Taitool Bioscience Co.Ltd. Cat#S0193-2

AAV2/2-hSyn-DIO-mCherry Shanghai Taitool Bioscience Co.Ltd. Cat#S0240-2

AAV2/9-CAG-DIO-EGFP-2A-TetTox Shanghai Taitool Bioscience Co.Ltd. Cat#S0235-9

AAV2/5-hEF1a-DIO-RVG Shanghai Taitool Bioscience Co.Ltd. Cat#S0325-5

AAV2/5-hEF1a-DIO-H2B-EGFP-T2A-TVA Shanghai Taitool Bioscience Co.Ltd. Cat#S0320-5

RV-EnvA-6G-mRuby3 Shanghai Taitool Bioscience Co.Ltd. Cat#R002

AAV2/9-CAG-FLEX-GFP OBiO Technology(Shanghai) Cat#AG28304

AAV2/9-GAD67-DIO-mCherry OBiO Technology(Shanghai) Cat#H15084

PRV-CAG-RFP Brain TVA (Wuhan, China) Co.Ltd. Cat#P03002

AAV2/2Retro-hEF1a-DIO-ChETA-EYFP prepared in the Xue laboratory N/A

Chemicals, peptides, and recombinant proteins

Ethanol Sangon Biotech Cat#A500737

Sucrose Sangon Biotech Cat#A100335

DEPC water Sangon Biotech Cat#B501005

Triton X-100 Sangon Biotech Cat#A110694

Bovine albumin Sangon Biotech Cat#A600332

Isopropyl alcohol Sangon Biotech Cat#A600918

Paraformaldehyde Sigma-Aldrich Cat#V900894

Clozapine N-oxide Sigma-Aldrich Cat#34233-69-7

N-Methyl-D-aspartic acid Sigma-Aldrich Cat#6384-92-5

Sodium carboxymethyl cellulose Sigma-Aldrich Cat#9004-32-4

Atopin Aladdin Cat#A109524

(Continued on next page)

Cell 186, 398–412.e1–e8, January 19, 2023 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

(R)-(-)-Phenylephrine Hydrochloride Aladdin Cat#G1316011

Chloroform Sinopharm Cat#10006818

SYBR Green Roche Cat#4913914001

TRIzol Reagent Thermo Fisher Cat#15596026

2 3 Taq Master Mix (Dye Plus) Vazyme Cat#P112-03

Optimal Cutting temperature (O.C.T) Compound Sakura Cat#4583

Isoflurane RWD Life Science Co.,Ltd. Cat#R510-22-10

Critical commercial assays

Insulin ELISA kit Millipore Cat#EZRMI-13K

Cholecystokinin ELISA kit Cloud-Clone Cat#CEA802Mu

Ghrelin ELISA Kit Elabscience Biotechnology Co.,Ltd. Cat#E-EL-M0551c

Orexin A ELISA Kit Elabscience Biotechnology Co.,Ltd. Cat#E-EL-M0860c

Glucagon ELISA Kit Elabscience Biotechnology Co.,Ltd. Cat#E-EL-M0555c

Epinephrine ELISA kit Elabscience Biotechnology Co.,Ltd. Cat#E-EL-0045c

Corticosterone ELISA Kit Elabscience Biotechnology Co.,Ltd. Cat#E-EL-0161c

Norepinephrine ELISA Kit Elabscience Biotechnology Co.,Ltd. Cat#E-EL-0047c

Glucagon Like Peptide 1 ELISA Kit Elabscience Biotechnology Co.,Ltd. Cat#E-EL-M3012

Lactate colorimetric kits Elabscience Biotechnology Co.,Ltd. Cat#E-BC-K044-M

Growth Hormone colorimetric kits Elabscience Biotechnology Co.,Ltd. Cat#E-EL-M0060c

Nonesterified fatty acids colorimetric kits Elabscience Biotechnology Co.,Ltd. Cat#E-BC-K013-S

AG Evo M-MLV RT kit Accurate Biology Cat#AG11705

Vasopressin radioimmunoassay kit DIAsource ImmunoAssays S.A. Cat#KIPERB319

Deposited data

Blood glucose and iBAT thermogenesis raw data Mendeley Data https://doi.org/10.17632/y8nwvjh5pp.1

Experimental models: Organisms/strains

Mouse: Opn4-/- Gift from King-Wai Yau in

Johns Hopkins University

N/A

Mouse: Opn4cre Gift from King-Wai Yau in

Johns Hopkins University

N/A

Mouse: Opn4 f/f Gift from King-Wai Yau in

Johns Hopkins University

N/A

Mouse: Cnga3-/-::Gnat1-/-::Opn4+/+ Gift from King-Wai Yau in

Johns Hopkins University

N/A

Mouse: Adrb3-/- Gift from Wen-wen Zeng

in Tsinghua University

N/A

Mouse: C57BL/6J SPF (Beijing) Biotechnology Co., Ltd. N/A

Mouse: Oxt-IRES-cre Jackson Laboratory JAX: 024234

Mouse: Avp-IRES2-cre Jackson Laboratory JAX: 023530

Mouse: Vgat-IRES-cre Jackson Laboratory JAX: 028862

Mouse: Ai3 Jackson Laboratory JAX: 007903

Oligonucleotides
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Ucp1-F: 5’-AAGCTGTGCGATGTCCATGT-3’ Tsingke Biotechnology Co., Ltd. N/A

Ucp1-R: 5’-AAGCCACAAACCCTTTGAAAA-3’ Tsingke Biotechnology Co., Ltd. N/A

Pgcla2-F: 5’-AGCCGTGACCACTGACAACGAG-3’ Tsingke Biotechnology Co., Ltd. N/A

Pgcla2-R: 5’-GCTGCATGGTTCTGAGTGCTAAG-3’ Tsingke Biotechnology Co., Ltd. N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Dio2-F: 5’-GTCCGCAAATGACCCCTTT-3’ Tsingke Biotechnology Co., Ltd. N/A

Dio2-R: 5’-CCCACCCACTCTCTGACTTTC-3’ Tsingke Biotechnology Co., Ltd. N/A

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html

LAS X Leica https://www.leica-microsystems.com/

products/microscope-software/details/

product/leica-las-x-ls/

ArControl behavioral system Chen and Li74 N/A

Other

Digital Stereotaxic Instruments RWD Life Science Co.,Ltd. China https://www.rwdstco.com/product-

item/digital-stereotaxic-instruments/

Infrared thermograph camera (Fortric 225S) Fortric, China https://www.fotric.cn/products/23

Radiometer(SRC-200S) Everfine Photo E Info CO., Ltd, China http://www.everfine.net/en/productsinfo.

php?cid=116&id=589

Leica SP8 scanning microscope Leica, Germany https://www.leica-microsystems.

com.cn/cn/products/confocal-

microscopes/p/leica-tcs-sp8/

Cryostat microtome Leica, Germany https://www.leicabiosystems.com/

zh-cn/histology-equipment/cryostats/

leica-cm3050-s/

Arduino Uno Rev3 Arduino, Italy https://store.arduino.cc/products/

arduino-uno-rev3

LightCycler-� 96 Instrument Roche, Switzerland https://sequencing.roche.com/us/en/

products/group/lightcycler-96.html

Accu-Chek Aviva plus glucometer Roche, Switzerland https://www.accu-chek.com/meters/

aviva-meter

Promethion Metabolic Cage System, Sable Systems International, USA https://www.sablesys.com/products/

promethion-core-line/

AB Sciex 6500+ quadrupoleion trap mass

spectrometer

AB Sciex, Framingham, MA, USA https://sciex.com/products/

massspectrometers/qtrap-systems/

qtrap-6500plus-system

ExionLCTM AD ultra-highperformanceliquid

chromatography

AB Sciex, Framingham, MA, USA https://sciex.com/cr/products/hplc-

products/ exionlc

Shim-pack GIST C18 column Shimadzu, Columbia, MD, USA 227-30001-02

Sorvall� ST 16 Centrifuge Thermo Fisher Scientific Inc. USA https://www.thermofisher.com/order/

catalog/product/75004240?SID=

srch-hj-75004240

NanoVue spectrophotometer GE Healthcare, USA https://www.gehealthcare.com/

Microliter Syringes

(Model 65 removable needle with 31-gauge

customized needle)

Hamilton company, USA https://www.hamiltoncompany.com/

laboratory-products/syringes/general-

syringes/microliter-syringes

Dental cement Super-Bond C&B, Sun Medical Co., Japan https://sunmedical.co.jp/english/

product/super-bond/cb-kit/index.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Tian Xue

(xuetian@ustc.edu.cn).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d Blood glucose and iBAT thermogenesis raw data have been deposited at Mendeley Data and are publicly available as of the

date of publication. Accession numbers are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants
The study was conducted according to the ethical guidelines of the First Affiliated Hospital of the University of Science and

Technology of China and all the subjects signed informed consent to participate in the study (KY2022-046). During the daytime,

for OGTT between the white light and darkness at �19�C ambient temperature, 12 healthy individuals (6 males, 6 females) were re-

cruited, with ages of 26.5 (SD±3.4) years and with BMI of 21.7 (SD±3.5) kg/m2. During the daytime, for OGTT between the white light

and darkness at �29�C ambient temperature, 10 healthy individuals (5 males, 5 females) were recruited, with ages of 24.9 (SD±3.5)

years and with BMI of 21.1 (SD±2.4) kg/m2. During the daytime, for OGTT between the blue/red light and darkness at�19�C ambient

temperature, 14 healthy individuals (5 males, 9 females) were recruited, with ages of 23.5 (SD±1.9) years and with BMI of 21.0

(SD±2.2) kg/m2. During the nighttime, for OGTT between the white light and darkness at �19�C ambient temperature, 14 healthy

individuals (8 males, 6 females) were recruited with ages of 23.4 (SD±2.2) years and with BMI of 21.8 (SD±2.6) kg/m2. For more

detailed information, see Supplemental Table (Table S1).

Animal
All experiments were performed with adult male mice (8-16 weeks, C57BL/6J or transgenic mice as specified) in this study. All mice

were housed under a 12 h/ 12 h light/dark cycle (�100 lux white ambient illumination) and at an ambient temperature of 23�C ad

libitum. All animal procedures were approved by the Institutional Animal Care and Use Committees at the University of Science

and Technology of China (USTC) and the Chinese Academy of Sciences (CAS) review board. C67/BL6J mice were purchased

from SPF (Beijing) Experimental Animal Science and Technology Co., Ltd. Cre recombinase-induced Opn4 gene(Gene ID: 94233,

encoding melanopsin) knockout (Opn4f/f), Opn4Cre, Opn4 knockout (OPN4-KO, Opn4-/-) and melanopsin-Only (MO: Gnat1-/-,

Gnat1 encoding the rod specific a transducin; Cnga3-/-, Cnga3 encoding the cone specific cyclic nucleotide channel subunit;

Opn4+/+) mice were generous gifts from Ph.D. King-Wai Yau, Johns Hopkins University. Adrb3-/- (b3-adrenergic receptor (b3AR)

knockout) mice were provided by Wen-Wen Zeng, Tsinghua University. Avp-IRES2-Cre mice (Stock No: 023530), Oxt-IRES-Cre

mice (Stock No: 024234), Vgat-IRES-Cre knock-in mice (Stock No: 028862) and Ai3 mice (Stock No: 007903) were obtained from

Jackson Laboratories.

METHOD DETAILS

Light sources
Light intensity at the general room level usually ranged from 150 to 500 lux. We used sunlight, and white, blue and red LED light

(�200-400 lux) as the light stimulus in this study. We detected their wavelength in nanometer (380nm-780nm) by a radiometer

(SRC-200S, Everfine Photo-e-info CO., Ltd, China). To facilitate comparisons, the light source was converted to ‘‘equivalent

monochromatic 480 nm (peak spectrum of melanopsin) light’’, by normalized Opn4 sensitivity spectrum,22 f(l), and the measured

spectrum of the light stimulus, L(l). The conversion formula is:

Photonsequivalent 480nm light =

Z780nm
200nm

fðlÞ � LðlÞdl

The ambient sunlight intensity (8.80E+06 photons/um2.s) of testing room was measured on a clear day in Hefei Anhui during

mid-afternoon. Given that the detection range of this radiometer (380 nm - 780 nm) does not completely contain ultraviolet (UV) light

components, we revised the sunlight spectrum (200nm-780nm) using a standard spectrum fromASTM (G173-03 Standard Tables for

Reference Solar Spectral Irradiances). The revised sunlight spectrum was converted to ‘‘equivalent monochromatic 480 nm (peak

spectrum of melanopsin) light’’ using above formula.

Overall physical detection
To measure overall physical activity, beam-crossing monitoring was conducted using a Sable Systems (Promethion Metabolic Cage

System, Sable Systems). In brief, mice were acclimated for 4 days in cages under a 12:12 light/dark cycle. Subsequently, mice were

monitored for 24 h under 12:12 L/D ambient light, and then monitored for another 24 h with dark exposure from ZT5 to ZT8.5 or light

exposure from ZT13 to ZT16.5.
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Pupillary light reflex
Head-fixed mice were used for pupillary light reflex (PLR) experiments. One week before PLR experiments, mice were anesthetized

with 1.5–2.0% isoflurane and a plastic head bar was secured to the skull using dental cement (Super-Bond C&B, Sun Medical Co.,

Japan). Opn4+/+; Pde6brd1/rd1; ConeDTA (only ipRGC photoreception) mouse was exposed to a 10 sec white light, blue light, sunlight

or red light after 2 h dark adaptation. Wemeasured the diameter of the pupil, using an infrared CCD camera. Videos were recorded at

a frame rate of 5 Hz and analyzed using MATLAB software. The pupil area was measured at maximum constriction after light stim-

ulation begin.

IPGTT and ITT
Micewere brought from the animal housing room into the testing room (12 h/ 12 h light/dark cycle) and acclimated for 2weeks prior to

testing. Each mouse underwent multiple IPGTT (Intraperitoneal glucose tolerance test) with an interval of 3-4 days between light

(red/blue/white/sunlight) and dark. Especially for chemogenetic manipulation experiments, each mouse underwent forth IPGTT

(light-PBS, light-CNO, dark-PBS, dark-CNO). During IPGTT, the blood samples were taken from tail vein nicks at 0 min (ZT7,

when mice have been subjected to dark/light for 2 hr.) and at 15, 30, 60 and 90 min after glucose injection (i.p. 20% glucose solution,

1 g/kg). During the ITT, blood sampleswere taken at 0, 15, 30, 60, 90, 120, 150 and 180min after insulin injection (ITT, i.p. 0.5 U/kg). To

minimize stress from restriction of voluntary locomotor activities by handling, and to prevent intraperitoneal injection using needle

during multiple ipGTT experiments, mice were head-fixed and placed on a single-axis rotating ball, on which they could run freely

during ipGTT. Mice were anesthetized with 1.5–2.0% isoflurane, and a plastic head bar was secured to the skull using dental cement

(Super-Bond C&B, Sun Medical Co., Japan). And then the sterile catheter was placed into the abdomen, and tunneled subcutane-

ously to the top of the neck and securedwith dental cement, allowing for glucose or other agents loading to be done with no handling.

After a 1-week surgical recovery, mice were habituated to head-fix and running on a free-spinning single-axis rotating ball for 1 week.

Blood glucose was measured by using an Accu-Chek Aviva plus glucometer (Roche, Indianapolis, IN). The experimenter wore a red,

low-illumination headlamp (illumination wavelength >650 nm and <10 lux) to operate per under dark conditions. We calculated the

percent change in blood glucose relative to the baseline (time 0), and the area under the time curves (AUC) for percent change in

blood glucose using the linear trapezoidal rule:

gtimeðiÞ =
��
GtimeðiÞ

�
Gtimeð0Þ � 1

� � 100�%
AUC =

"Xn

i = 1

gtimeðiÞ +gtimeði� 1Þ
2

� �timeðiÞ � timeði� 1Þ
�#,�

timeðnÞ � timeð0Þ
�

where gtime(i) is the percent change in blood glucose, Gtime(0) is the
 glucose concentration at baseline and Gtime(i) is the glucose con-

centration at one of timepoints.

Stereotaxic injection
Adult mice were anesthetized with 1.5%–2.0% isoflurane (RWD Life Science Co., China) and fixed on a stereoscope apparatus

(RWD Life Science Co., China). Erythromycin ointment (Jiangxi Decheng Pharmaceutical Co., Ltd) was applied to the surface

of the eyeballs to keep the cornea moist. The experimenter used a scalpel to make a small incision in the scalp along the midline

of the head to expose the skull. The surface of the skull was disinfected by an alcohol cotton ball. A small window was drilled into

the skull surface of the target area and 50 to 150 nl of virus was injected bilaterally into the target area at a rate of 50 nl/min. The

coordinates, defined as dorsal–ventral (DV) from the brain surface, anterior–posterior (AP) from bregma and medial–lateral (ML)

from the midline, were as follows: SON (AP, -0.50 mm from bregma; ML, ±1.25 mm; DV, -5.25 mm); SCN (AP, -0.50 mm from

bregma; ML, ±0.40 mm; DV, -5.60 mm; 2 � inclined); PVN (AP, -0.60 mm from bregma; ML, ±0.25 mm; DV, -4.70 mm); NTS

(AP, -7.80 mm from bregma; ML, ±0.50 mm; DV, -3.75 mm); RPa (AP, -7.60 mm from bregma; ML, 0.00 mm; DV, -5.40 mm).

After the completion of injection, including a 10-min delay, the injection pipette was slowly withdrawn and the scalp was sutured

back. Following surgery, mice were allowed to recover from anesthesia on a heating mat before being returned to their

home cages.

Anterograde, retrograde tracing and virus
The following fluorescent tracing viral tools were employed in this study: AAV2/2-hEF1a-DIO-ChR2-eYFP (1E+13 V.G./ml) was used

in intraocular injections to Cre-dependently express ChR2 and yellow fluorescence. AAV2/2Retro-hEF1a-DIO-ChETA-EYFP (1E+13

V.G./ml) was used to retrogradely express ChETA and yellow fluorescence in the neurons projecting to the injection site through

terminal absorption. scAAV2/1-hSyn-Cre-pA (1E+13 V.G./ml) was used to express Cre recombinase in postsynaptic neurons to

achieve input-specific labeling. AAV2/2Retro-hSyn-Cre (5E+12 V.G./ml) and AAV2/2Retro-hSyn-Flp (5E+12 V.G./ml) were used to

retrogradely express Cre and Flp recombinase in the neurons projecting to the injection site through terminal absorption. AAV2/

2Retro-CAG-FLEX-Flp (5E+12 V.G./ml) was used to retrogradely Cre-dependently express Flp recombinase in the neurons
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projecting to the injection site through terminal absorption. AAV2/9-hEF1a-DIO-EYFP (1E+12 V.G./ml) and AAV2/9-CAG-FLEX-GFP

(1E+12 V.G./ml) were used to Cre-dependently express fluorescence. AAV2/9-hEF1a-fDIO-mGFP (1E+12 V.G./ml) was used to Cre-

dependently express green fluorescence. AAV2/9-GAD67-DIO-mCherry (1E+12 V.G./ml) was used to Cre-dependently express red

fluorescence in inhibitory neurons. AAV2/9-hSyn-DIO-hM4Di-mCherry (1E+12 V.G./ml) and AAV2/9-hSyn-DIO-mCherry (1E+12

V.G./ml) were used to Cre-dependently express the inhibitory DREADD, and mCherry was used as a control in central neurons.

AAV2/9-hEF1a-fDIO-hM4Di-mCherry (1E+12 V.G./ml) was used to Flp-dependently express the inhibitory DREADD in central neu-

rons. AAV2/2-hSyn-DIO-hM3Dq-mCherry (1E+13 V.G./ml), AAV2/2-hSyn-DIO-hM4Di-mCherry (1E+13 V.G./ml) and AAV2/2-hSyn-

DIO-mCherry (1E+13 V.G./ml) were used to Cre-dependently express excitatory DREADDs, the inhibitory DREADDs, and mCherry

was used as a control in intraocular injections. AAV2/9-CAG-DIO-TetTox-EGFP (1E+12 V.G./ml) was used to Cre-dependently ex-

press the light chain of tetanus toxin (TetTox) in central neurons to block synaptic transmission. AAV2/5-hEF1a-DIO-RVG (2E+12

V.G./ml) was used to Cre-dependently express G protein, which reinstated the trans-synaptic capability of modified rabies virus

(RV-EnvA-6G-mRuby3), and AAV2/5-hEF1a-DIO-H2B-EGFP-T2A-TVA (1E+12 V.G./ml) was employed to direct the infection of

modified RV (RV-EnvA-6G-mRuby3). RV-EnvA-6G-mRuby3 (2E+8 TU/ml) was used in conjunction with the aforementioned helper

viruses for retrograde trans-synaptic tracing. PRV-RFP (2E+9 PFU/ml) was used for polysynaptic retrograde tracing from intrascap-

ular brown adipose tissue (iBAT).

AAV2/2Retro-hEF1a-DIO-ChETA-EYFP was prepared in the Xue laboratory. AAV2/9-GAD67-DIO-mCherry was obtained from

OBiO Technology (Shanghai) Corp., Ltd. All other AAV tools and RV-EnvA-6G-mRuby3 were obtained fromShanghai Taitool Biosci-

ence Co., Ltd. PRV-RFP was obtained from BrianVTA (Wuhan) Co., Ltd.

SCN and SON extatory toxin lesion
For excitotoxicity experiments, we injected bilaterally a 30 nl NMDA (50mM) solution into the SON or SCN. The injection process was

the same as described above. Finally, glial fibrillary acidic protein (GFAP) staining and wheel running tests were used to verify the

lesion effect. We conducted follow-up intraperitoneal glucose tolerance Test (ipGTT) experiments two weeks after NMDA injection.

DREADDS
DREADDs (designer receptors exclusively activated by designer drugs) strategy. In this study, we manipulated neural circuits using

hM3D (Gq) for activation and hM4D (Gi) for inhibition. Thirty minutes prior to IPGTT, CNO (Clozapine-N-Oxide, Sigma-Aldrich St.

Louis, MO, USA) was intraperitoneally (i.p.) injected (2 mg/kg).

Intraocular injection
A dilating eye drop (1% w/v Atopin and 5% w/v phenylephrine hydrochloride) was applied to dilate the pupils. After approximately

5 min or until the pupils were fully dilated, mice were anesthetized with 1.5%–2.0% isoflurane, and eye gel (5% sodium carboxy-

methyl cellulose) was used to prevent eyes from drying. The eyeball was then penetrated through the pupil with the tip of a

26-gauge needle under the stereoscope to release the ocular pressure, immediately followed by the bilateral injection of 1.5 ml of virus

(1E+13 V.G./ml) or tracing dye into the vitreous chamber (the space between the lens and the retina) of the eyes, to ensure delivery

specifically to the retina, using a Hamilton syringe (Model 65 RN SYR with 31-gauge customized needle). Following surgery, mice

were allowed to recover from anesthesia on a heating mat before being returned to their home cages, and those with noticeable

bleeding or damage to the retina were excluded from further experiments.

Wheel running test
All micewere individually housed in cages equippedwith a runningwheel (110mmdiameter). LED lights (�200 lux, illumination wave-

length 410–720 nm) with adjustable brightness were installed at the top of each cage. All animals were housed at room temperature

with ad libitum access to food and water. The number of wheel revolutions was counted using a custom-made drive based on Ar-

Control.74 The activity distribution in 5 min time bins was analyzed using MATLAB software.

Metabolic profiling analysis
Serum samples were collected via the ocular vein after 2.5 h of fasting with or without light exposure during the daytime. The blood

was centrifuged (1500 rpm, 15 min) for serum, quickly frozen with liquid nitrogen, and then stored at -80�C for subsequent testing.

The experimenter wore a red, low-illumination headlamp (illumination wavelength >650 nm and <10 lux) to operate under dark

conditions. To screen the changes in serum nutrients between light/dark conditions, untargeted metabolomics using UHPLC

(1290 Infinity II, Agilent Technologies) coupled to a quadrupole time-of-flight (AB Sciex TripleTOF 6600) was executed at Shanghai

Applied Protein Technology Co., Ltd. The aforementioned serum samples (100 ml) were added 4 volumes of cold methanol/aceto-

nitrile (1:1, v/v) and the mixtures were centrifuged for 20 mins (14000g, 4�C). The supernatant was collected and dried in a vacuum

centrifuge. For liquid chromatography (LC) mass spectrometry (MS) analysis, the samples were re-dissolved in 100 ml acetonitrile/

water (1:1, v/v) solvent. To monitor the stability and repeatability of instrument analysis, quality control (QC) samples were prepared

by pooling 10 ml of each sample and analyzed together with the other samples. The blank sample was the mobile phase A (25 mM

ammonium acetate and 25mMammonium hydroxide in water). All samples (experimental samples, QC samples, and blank samples)

were injected into UHPLC system. The QC samples were inserted regularly and analyzed in every five samples. Then all samples and
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the QC sample were separated on a hydrophilic interaction chromatography column (Waters, ACQUITY UPLC BEH Amide 1.7 mm,

2.1 mm3 100 mm column), in both ESI positive and negative modes. The mobile phase contained A=25mM ammonium acetate and

25 mM ammonium hydroxide in water and B= acetonitrile. The gradient was 95% B for 0.5 min, linearly reduced to 65% in 7 min,

reduced to 40% in 0.1 min and kept for 1 min, and then increased to 95% in 0.1 min, with a 3 min re-equilibration period employed.

The product ion scan was acquired using information dependent acquisition with high sensitivity mode selected. After peak picking

and grouping, all sample values were normalized to total peak intensity. In the extracted ion features, only the variables having more

than 50% of the nonzero measurement values in at least one group were kept. Compound identification of metabolites by MS/MS

spectra with an in-house database established with available authentic standards. Student’s t-tests at univariate level were used to

measure the significance of each metabolite, and p values less than 0.05 were considered statistically significant.

A panel of hormones associated with glucometabolism, were detected by ELISA. The ELISA kits used in this study were as follows:

Insulin ELISA kit (Millipore, EZRMI-13K); Epinephrine ELISA kit (Elabscience, E-EL-0045c); Norepinephrine ELISA Kit (Elabscience,

E-EL-0047c); Cholecystokinin ELISA kit (Cloud-Clone, CEA802Mu); Corticosterone ELISA Kit (Elabscience E-EL-0161c); Glucagon

ELISA Kit (Elabscience E-EL-M0555c); Glucagon Like Peptide 1 ELISA Kit (Elabscience E-EL-M3012); Ghrelin ELISA Kit (Elabscience

E-EL-M0551C); Orexin A ELISA Kit (Elabscience E-EL-M0860c); and Growth Hormone (Elabscience E-EL-M0060c). Nonesterified

fatty acids (Elabscience E-BC-K013-S) and lactate (Elabscience E-BC-K044-M) were detected by colorimetric kits.

Radioimmunoassay and LC-MS/MS
Blood was collected via the ocular vein after 2.5 h of fasting with or without light exposure during the daytime. The blood was

centrifuged (1500 rpm, 15 min) to obtain plasma, which was quickly frozen with liquid nitrogen, and then stored at -80�C. After all
samples were collected, the plasma oxytocin was detected by LC-MS/MS and plasma vasopressin were detected by radioimmu-

noassay (RIA kit: KIPERB319, DIAsource ImmunoAssays S.A.). For LC–MS/MS, a 30 mL of plasma oxytocin was injected into an

ExionLC� AD UHPLC (AB SCIEX) and separated on a Shim-pack GIST C18 column (2 mm, 50 3 2.1 mm) (Shimadzu) with a flow

rate of 0.4 ml/min at 40�C. Mobile phase A was water and mobile phase B was ACN. It was started with 5% mobile phase B for

0.5 min, then increased to 60% within 1 min, kept constant at 60% for 2 min, reduced to 5% at 4 min, and kept constant until the

end of the run at 8min. Autosampler temperature was kept at 10�C. The LC eluent was introduced into an ABSciex 6500+ quadrupole

ion trapmass spectrometer (AB Sciex, Framingham, MA, USA) for MRM using positive ionmode with ESI. The final MRMparameters

were as follows: curtain gas (20 psi), collison gas (high), IonSpray voltage (5500 V), source temperature (550�C), ion source gas 1

(50 psi), ion source gas 2 (50 psi), declustering potential (60 V), and entrance potential (5 V). Quantification was performed by

MRM of the protonated precursor molecular ions [M + H] + and the related product ions. The resolutions of the quadrupole Q1

mass (precursor ion) and Q3 mass (product ion) were set at high. For the MRM scan of OXT, ion pairs 1007.4 / 723.4 m/z were

monitored for quantitation, while ion pairs 1007.4/ 285.0 m/z were monitored for confirmation. Chromatograms and mass spectral

data were acquired and processed using Analyst�1.6.3 software (AB Sciex, Framingham, MA, USA).

Immunohistochemistry
Mice were anesthetized with 1.5%–2.0% isoflurane, and then PBS and 4% paraformaldehyde (PFA, w/v in PBS) solutions were

infused intracardially. The brains were removed and postfixed in 4% PFA at 4�C for 24 h. The slices were dehydrated with 30%

sucrose solution at 4�C for 24 h. Coronary slices of 40 um thickness were cut with a Cryostat microtome (Leica CM3050S) and

the slices were washed with PBS (4*10 min). The tissues were blocked with blocking solution (PBS containing 5% BSA, 5% goat

serum and 0.5% Triton X-100 as appropriate) at room temperature for 2 h. Then the sections were incubated with the primary anti-

body working solution (diluted with blocking solution) at 4�C for 48 h. The primary antibodies used in this study were as follows: rabbit

anti-GFAP (Sangon Biotech D120691; 1:200); rabbit anti-c-Fos (Synaptic Systems 226003; 1:5,000; RRID AB_2231974; lot no. 7-78);

rabbit anti-melanopsin (Advanced Targeting System, AB-N38, 1:10000; RRID AB_1266797; lot no. 112-16); rabbit anti-vasopressin

(Immunostar #20069 1:500 RRID: AB_572219); rabbit anti-oxytocin (Abcam ab212193;1:500); and mouse anti-BDNF (Proteintech

66292-1-Ig; 1:200). After 48 h, the sections were washed with PBS (3*10 min). Then the working solution of the secondary antibody

(diluted with blocking solution; 1:500) was incubated at room temperature for 2 h. The working solution of the secondary antibody

used in this study was as follows: goat anti-rabbit Alexa Fluor 568 (Thermo Fisher A-11036, 1:500; RRID AB_10563566; lot no.

2155282), goat anti-rabbit Alexa Fluor 488 (Thermo Fisher A-11034, 1:500; RRID AB_2576217; lot no. 2069632) and donkey-anti-

mouse Alexa Fluor 488 (Thermo Fisher A-10680, 1:500; RRID AB_2534062; lot no. 2318435).

For retinal immunohistochemistry, the eyes of the anesthetizedmice were removed and fixed in 4%PFA for 24 h. The lens and RPE

were then stripped, and filaments in the retina were cleaned. All staining procedures were performed according to the standard

procedure mentioned above. All stained sections were photographed using a Leica confocal microscope (SP8, Leica).

Polysynaptic retrograde tracing
For polysynaptic retrograde tracing from intrascapular brown adipose tissue (iBAT), the two brown fat pads of mice were injected at 6

sites, each with 200 nL PRV-CAG-RFP (BrainTVA, Wuhan). Mice were infused intracardially with PBS and 4% paraformaldehyde

(PFA, w/v in PBS) and photographed using a Leica confocal microscope (SP8, Leica) 6-8 days after the injection of PRV-RFP.
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Molecular profiling of IBAT tissue
Mice were brought from the animal housing room into the testing room (12 h/ 12 h light/dark cycle) and acclimated for 2 weeks prior to

testing. During testing, mice were fasted and pre-exposed to dark or light for 2 h (starting at ZT5) before glucose injections (ZT7). Then,

micewere anesthetizedwith isoflurane at 0min (ZT7) and 30min (ZT7.5) after glucose loading (1 g/kg), and rapid intra-cardiac perfusion

wasperformedwith ice-coldPBS. iBATwas removed,quickly frozenwith liquidnitrogenand thenstoredat -80�C for subsequent testing.

Theexperimenterworea red, low-illuminationheadlamp(illuminationwavelength>650nmand<10 lux) tooperateunderdarkconditions.

Total RNA was isolated from iBAT tissue using TRIzol Reagent (Thermo Fisher), and the procedures for separating and purifying RNA

wereas follows:chloroform(200ul/sample)wasadded,oscillated, incubated for3min,andcentrifugedat4�C(12000g,4min). Theupper

transparent aqueous phase liquid was transferred to a new EP tube, and isopropyl alcohol (500 ul/sample) was added to the tube and

evenlymixed.After standing for 20min, the liquidwascentrifugedat4�C(12000g,15min). Thesupernatantwasdiscarded,and thepellet

waswashedbyadding 1mLethanol solution (75%, cooled), evenlymixing, andcentrifuging at 4�C (12000g, 2min). Finally, theRNAwas

dissolved inDEPCwater.RNAquantitywasmeasuredwithaNanoVuespectrophotometer (GEHealthcare, LittleChalfont, Buckingham-

shire, UK). Reverse transcription was performed using the AGEvoM-MLVRT kit (Hunan Accurate Biotechnology Co.,Ltd). Quantitative,

real-time PCR (qPCR) was performed using SYBR Green (Roche, Indianapolis, IN). Primers were used at a final concentration of 1 mM.

Gene expression was normalized to the housekeeping gene GAPDH. The primers used in the study were as follows:

Gapdh: Forward: CTGCCCAGAACATCATCCCT.

Gapdh: Reverse: TGAAGTCGCAGGAGACAACC.

Ucp1: Forward: AAGCTGTGCGATGTCCATGT.

Ucp1: Reverse: AAGCCACAAACCCTTTGAAAA.

Pgcla2: Forward: AGCCGTGACCACTGACAACGAG.

Pgcla2: Reverse: GCTGCATGGTTCTGAGTGCTAAG.

Dio2: Forward: GTCCGCAAATGACCCCTTT.

Dio2: Reverse: CCCACCCACTCTCTGACTTTC.

Infrared thermograph
Micewere brought from the animal housing room into the testing room (12 h/ 12 h light/dark cycle) and acclimated for 2 weeks prior to

testing. During testing, mice were fasted and pre-exposed to dark or light for 2 h (starting at ZT5) before glucose injections (ZT7).

Then, an infrared thermograph camera (Fortric 225S) was used to detect the surface temperature above iBAT from a top view at

0 min (ZT7) and 30 min (ZT7.5) after glucose loading (1 g/kg) under light or dark conditions. Each time the camera was placed at

the same distance from the mice to ensure that a clear image of the mouse body outline and hair could be obtained. The heatmaps

were automatically generated by the camera software. The experimenter wore a red, low-illumination headlamp (illumination

wavelength >650 nm and <10 lux) to perform experiments under dark conditions.

Human OGTT
Healthy volunteer subjects were recruited for a 75 g OGTT at �19�C or �29�C ambient temperature. Subjects underwent the OGTT

twice or thricewith an interval of 3 days between the light (white/blue/red) anddark conditions. For humanOGTT, theBMI, age and sex

of each testees were recorded. Testees underwent overnight fasting when OGTT was performed during the daytime (08:00 to 12:00)

and8hof fastingwhenOGTTwasperformedat nighttime (18:00 to22:00). Testees sat on their owncomfortable sofas, did not exercise

and kept quiet in the room. The first 2 h of OGTT was for adaptation. The basal blood glucose concentration was measured first from

finger blood. Then the testees tookanoral glucosesolution (150mlmedical 50%glucose solutiondilutedwithpurifiedwater to 300mL)

and further blood samples weremeasured at 30, 60, 90 and 120min using an Accu-Chek Aviva plus glucometer (Roche, Indianapolis,

IN). The human OGTT data were statistically analyzed in the same way as the data from mouse IPGTT.

QUANTIFICATION AND STATISTICAL ANALYSIS

Randomization and blinding
In all experiments, the experimental animals were randomly assigned from multiple cages. The experimental animals were tested

according to the semi-random principle, and the experimental and control animals were tested in turn. In all experiments involving

the comparison between the light and dark conditions, the light or dark conditions were randomly tested in order. The experimenters

were not completely blind when collecting data and grouping animals, as they needed to record the label of each animal and sample.

However, each data was analyzed using consistent parameters and algorithms by nonparticipants.

Statistics reproducibility
Data are presented as the mean ± SEM. No statistical methods were used to predetermine sample sizes. Sample sizes are indicated

in the figure’ legends and associated text. Statistical differences of normally distributed data were determined using paired or

unpaired two-tailed Student’s t-test, or with two-way ANOVA statistical tests, followed by Tukey’s post hoc test. P values less

than 0.05 were considered significant. ns: not significant. P values are indicated as follows: * P < 0.05, ** P < 0.01, *** P < 0.001.
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Figure S1. Light decrease GT at nighttime, related to Figure 1

(A) Upper: the mean number of wheel revolutions per 5 min for light/dark conditions during ZT5–ZT8.5 (left) or ZT13–ZT16.5 (right). n = 5 animals/group. By two-

tailed non-paired t test. Lower: the total locomotor activity during ZT5–8.5 and ZT13–16.5. n = 10 mice/group. By two-tailed paired t test.

(B) Baseline concentrations and GT evaluation under the sunlight/blue/red (n = 11). By one-way ANOVA, Tukey’s multiple comparisons test.

(C) Insulin tolerance test (i.p. 0.5 U/kg) between light/dark conditions. Insulin tolerance evaluation in WT mice (n = 8). Two-tailed paired t test.

(D–G) Schematic of IPGTT protocol during nighttime (D, ZT13–16.5). GT evaluation inWTmice (E, n = 11), in OPN4-KOmice (F, n = 9), and inMOmice (G, n = 10).

All by two-tailed paired t test.

(H and I) Levels of glucometabolism-relevant hormones or nutrients under light/dark conditions. n = 5 mice/group. Two-tailed non-paired t test.

(J) Baseline concentrations of glucose in WT, OPN4-KO, or MO mice. Two-tailed paired t test.

(K and L) The normalized spectral sensitivity of mice OPN4 (purple), the spectrum of white/blue/red/sunlight. Blue, white, and sunlight, but not red, triggered pupil

constriction in Opn4+/+; Pde6brd1/rd1; ConeDTA mice (only ipRGC photoreception).

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were represented as mean ± SEM.

All by two-tailed paired t test.
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Figure S2. Wheel-running test in SCN-lesioned and SON-lesioned mice, related to Figure 2

(A and B) cFos expression elicited by light stimulation in the SON (A) and SCN (B).

(C) Wheel-running test for SCN-lesioned and SON-lesioned mice. SCN-lesioned mice lacked circadian rhythmicity.

(D) GT evaluation in Opn4f/f mice (n = 9). Two-tailed paired t test.

(E) Image of ipRGCs cells in retina ofOpn4f/fmice. Quantification of ipRGCs cells after specific melanopsin knockout in SON-innervating ipRGCs (n = 177.2 ± 2.8,

11 mice), in SCN-innervating ipRGCs (n = 167.7 ± 4.8, 12 mice), or in control group (n = 303.8 ± 17.9, 9 mice). Thus, the achieved melanopsin knockout cells were

�126.6 and �136.1 for OPN4-KOSON and OPN4-KOSCN mice, respectively.

(F) Schematic of retina retrogradely labeled experiment by injecting AAV2/2Retro-GFP into SON. Targeted cells per retina in this retrogradely labeled experiment

(mean ± SD,121.3 ± 7.5, n = 9).

(G) Targeted cells per retina in hM4Di (mean ± SD, 120.6 ± 7.0, n = 11) and hM3Dq (mean ± SD, 117.8 ± 7.9, n = 12) experiments.

(H and I) Baseline concentrations of glucose in SON-Sham, SON-Lesion, SCN-Sham, SCN-Lesion, and retina hM3Dq, retina hM4Di, and retina mCherry ex-

periments. Two-tailed paired t test.

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were represented as mean ± SEM. Scale bars, 50 mm in (A and B), 1,000 mm in (E), and 500 mm in (F).
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Figure S3. Light do not alter plasma AVP and OXT hormones level, related to Figure 3

(A) Experiment of monosynaptic tracing showing starter cells (yellow) in the SON area (red, RV; green, helper viruses) of Oxt-Cre (top) or Avp-Cremice (bottom).

(B and C) Representative images of cFos immunofluorescence and close-up showing co-localization of cFos (green) with SONOXT neurons (red) in Oxt-Ai3mice

(B) or of cFos (green) with SONAVP neurons (red) in Avp-Ai3 mice (C), using light stimulation. Percentage of cFos+-OXT+ neurons in OXT+ or AVP+ neurons (light

versus dark: 52.9% ± 0.35%versus 3.86% ± 0.90% for OXT neurons, n = 4mice/group; 21.1% ± 2.1%versus 1.78% ± 0.41% for AVP neurons, n = 3mice/group).

(D) Schematic and image of chemogenetic inhibition of SONAVP or SONOXT neurons.

(E) Experimental procedures for measuring plasma AVP level (n = 9 mice/group) and plasma OXT level (n = 3 mice/group) between light/dark conditions. Both by

two-tailed non-paired t test.

(F) GT evaluation in TetTox-mediated inhibition of SON-PVN pathway (n = 10 mice). Two-tailed paired t test.

(G–I) Baseline concentrations of glucose in hM4Di experiments for SONOXT, SONAVP, and SONAVP–PVN pathway. Two-tailed paired t test.

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were represented as mean ± SEM. Scale bars, 50 mm in (A) and 25 mm in (B, C, D, and F).
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Figure S4. SON-innervated PVN neurons sparsely innervate PAG and DR, related to Figure 4

(A) Terminal field of SON-innervated PVN neurons in the PAG and DR regions. DMPAG, dorsomedial periaqueductal gray; DLPAG, dorsolateral periaqueductal

gray; VLPAG, ventrolateral periaqueductal gray; LPAG, lateral periaqueductal gray; and DR, dorsal raphe nucleus.

(B) Experiment of monosynaptic tracing in NTS-projecting PVN area showed starter cells (yellow) in the PVN area (red, RV; green, helper viruses).

(C) Schematic and image of selective inhibition of NTS-projecting PVN neurons.

(D and E) The retrograde tracing experiment was used to identify the NTS-projecting PVN neuron types (D). Percentage (E) of BDNF+ (29.1% ± 4.3%) or OXT+

(14.5% ± 0.79%). n = 3 mice/group.

(F) Schematic of the anterograde trans-synaptic tracing showing co-localization (yellow) of PVN-projected NTS neurons (green) with GABAergic neurons (red).

(G) Image of selective inhibition of RPa-projecting NTSVgat neurons.

(H) Baseline concentrations of glucose in PVN-NTS hM4Di, PVN-NTS mCherry, PVN-NTS TetTox, and NTSVgat–RPa experiments. Two-tailed paired t test.

Data were represented as mean ± SEM. Scale bars, 50 mm in (A and G) and 25 mm in (B, C, D, and F).
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Figure S5. Light represses the expression of thermogenic genes in iBAT via ipRGC-SON pathway, related to Figure 5

(A) Representative images showing RFP+ neurons in primary motor cortex (M1), central amygdala (CEA), arcuate nucleus (ARC), periaqueductal gray (PAG),

dorsal raphe (DR), and suprachiasmatic nucleus (SCN) that were polysynaptically linked to iBAT.

(B) Representative image showing five branches of intercostal nerves before and after surgical denervation.

(C) Experimental procedures for measuring Ucp1/Pgc1a/Dio2 in iBAT at 0 min (ZT7, when mice have been subjected to dark/light for 2 h) and at 30 min (ZT7.5)

after glucose loading. n = 13 mice/group. One-way ANOVA, Tukey’s multiple comparisons test.

(D) iBAT surface temperature in OPN4-KO mice (n = 9). Two-tailed paired t test.

(E) Expression of thermogenic genes in light conditions of OPN4-KOSON (at 0 min, n = 4; at 30 min, n = 6) or OPN4-KO-ShamSON (n = 4 mice/group) mice. Two-

tailed non-paired t test.

(F–I) iBAT surface temperature measurement with CNO-induced inhibition of SONAVP-PVN (F, n = 9 mice), of PVN-NTS (G, n = 12 mice), and of NTSVgat-RPa

(H, n = 8 mice), and with TetTox-mediated inhibition of PVN-NTS (I, n = 5 for mCherry, n = 9 for TetTox). All by two-tailed paired t test.

(legend continued on next page)
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(J) Baseline concentrations of glucose inWT at thermoneutrality, WTwith DMSO treatment, WTwith SR59230A treatment,Adrb3�/� littermate control (Adrb3+/+),

and Adrb3�/� experiments. Two-tailed paired t test.

Pgc1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; Dio2, type II iodothyronine deiodinase; Ucp-1, uncoupling protein 1.

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were represented as mean ± SEM. Scale bars, 50 mm in (A).
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Figure S6. Basal glucose in human OGTT, related to Figure 6

(A) Baseline concentrations of glucose in human OGTT. Two-tailed paired t test.

(B) The spectrum of white, blue, and red light during human OGTT.

*p < 0.05, **p < 0.01, and ***p < 0.001. Data were represented as mean ± SEM.
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